#### Embedding Causal Block Diagrams Within Behaviour Trees

#### **Bentley James Oakes**

# Outline

**Problem to Address** Proposal **Formalisms Used** Experiments **Results Future Work** Conclusion



#### Blocks compute values at each time step Outputs connected to inputs

### Problem

multiply0 Product [0.1, -0.0, -0.011, -0.022, -0.032, -0.043] secondmultiply Product [0.0, 0.11, 0.110, 0.108, 0.106, 0.103] delay0 Delay [1.0, -0.0, -0.11, -0.22, -0.328, -0.435, -0.539]

How do we visualize/connect to simulation?

# Proposal

Find formalism to embed causal blocks into

Criteria: Equivalent One-to-one representation? Increase in power?

Easily understood/changed Easy to visualize (model/simulation)

# **Behaviour Trees**

Each agent in a simulation has a tree

Query tree to determine action of agent

Starting at root node: Each node will: Query children Perform action Return true/false

# **Behaviour Tree Example**



### **BT Advantages**

Easy to construct/rearrange trees Used in video games: Halo 2/Spore

Trees can control animation/sounds/AI Merge calculations with higher-level control

Lazy evaluation Don't solve everything at once

## **Similarities to CBD**

Both have nice tree structure Modular design Combine nodes for any function Values are passed up tree

Exploration of a formal equivalance CBD  $\rightarrow$  Behaviour tree Behaviour tree  $\rightarrow$  CBD

#### Differences

Algebraic loops in behaviour tree? Special handling required Not implemented in project

Only true/false value passed up Easily fixed → change to float 0 is false, anything else is true

# Embedding

CBD blocks map onto BH nodes directly

- Adder
- Multiplier
- Inverter
- Negator
- Constant
- Test
- Delay
- Integrator/Derivative\*



# Embedding

Multiplier node update():

```
If children.size == 0
output = 0
```

Result = 1 For Child c in children Result \*= c.update()

Output = result

### **Experiments**

#### **Circle Test:**

Use integrators to draw x(t) vs dx/dt(t)

Personal Space: Many agents in world One agent walks from start to goal All agents move away from each other



# **Results – Circle Test**





## **Results – Personal Space**



# **Results – Personal Space**



## **Future Work**

Detect algebraic loops

Implement behaviour trees in Atom3

Add detail to model visualization

Explore formal equivalence

## Conclusion

Behaviour trees add lots of power Control flow Handle animation/events Superset of CBD?

Visualization needed Evolution of values Hook into simulation

### References

Clark Verbrugge. COMP 521 course notes. 2012.

Hans Vangheluwe. COMP 522 course notes. 2012.

Damian Isla. Managing complexity in the Halo 2 AI system. In Proceedings of the Game Developers Conference, 2005.

Chong-U Lim. An A.I. Player for DEFCON: An Evolutionary Approach Using Behavior Trees. Imperial College, London.

**Questions?**